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It has been shown that both humanly constructed and natural networks are often characterized by small-world phenomenon and
assortative mixing. In this paper, we propose a geometrically growing model for small-world networks. The model displays both
tunable small-world phenomenon and tunable assortativity. We obtain analytical solutions of relevant topological properties such
as order, size, degree distribution, degree correlation, clustering, transitivity, and diameter. It is also worth noting that the model
can be viewed as a generalization for an iterative construction of Farey graphs.

1. Introduction

Recent studies of networked systems have led to the con-
struction of models to explore their relevant properties, as
one of the fundamental steps to understanding real-world
phenomena of many kinds. Among them, small-world effect
and network transitivity (or clustering) have attracted great
research attention [1, 2]. Many real-life systems, such as
social networks, food webs, World Wide Web, and airport
networks, show both a high level of local clustering, similar
to a regular lattice, and a relatively small average distance
or diameter, namely, small-world effect, similar to a random
graph.Networkswith these twodistinguishing characteristics
are often said to be small-world networks.

The first and seminal model of small-world network
is the Watts-Strogatz rewiring model [1], which induced
an avalanche of works on studying small-world effect of
complex networks and setting up variant models to expound
the mechanism of small-world phenomenon. A variety of
models of small-world networks have been studied, including
stochastic ones modeled by adding randomness to regular
graphs [1–7] and deterministic ones by making use of graph
construction on some specific graphs such as planar lattices
and Cayley graphs [8–11].

In this paper, we study a geometric growth model
𝐺(𝑚, 𝑡) for small-world networks controlled by a tunable

parameter𝑚. Our model is constructed in a deterministic
and recursive fashion. At each step, a multiple of 𝑚 ver-
tices will be added into the network as per some simple
geometric structure. Compared with probabilistic methods,
our model has some remarkable features. First, the model
evolves through time which mimics the network growth
in many real-world systems. Second, the simple generation
method yields to analytical treatment of relevant topological
properties include order, size, degree distribution and cor-
relations, clustering, transitivity, and diameter. Finally, the
model shows assortative mixing on the degrees, which is
observed in varied social networks and has profound impli-
cations for network resilience [12, 13]. Many of the important
properties studied in this paper (as mentioned above) are
tunable by adjusting the parameter 𝑚 in the model. For
example, we show that the level of assortativity increases with
𝑚 in terms of Pearson correlation coefficient, while clustering
as well as transitivity coefficients decrease with 𝑚. This gives
interesting characterization of a family of social network
models, since both properties (i.e., assortative mixing and
local clustering) are prevalent in social networks. Moreover,
although the diameter always grows proportionally to the
logarithm of the number of nodes in the network (hence
displaying the small-world effect), it is shown to have distinct
values for 𝑚 = 1 and 𝑚 > 1. Table 1 summarizes the main
contributions.
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Table 1: Properties of model 𝐺(𝑚, 𝑡).

𝑚 = 1
a

𝑚 ≥ 2

Cumulative degree distribution 𝑃cum(𝛿) (2𝑚)
−𝛿/2𝑚 for large 𝑡

Average neighbor degree 𝑘nn(𝛿)
𝑚
2

𝛿

2(2𝑚 − 1)
for large 𝑡

Pearson correlation coefficient 𝑟(𝑡) Increase with𝑚 as 2(2𝑚)
2

+ 2 − (9/ (2𝑚 − 1))

3(2𝑚)
2

+ 1 − (9/ (2𝑚 − 1))
for large 𝑡

Clustering coefficient 𝑐(𝑡) Decrease with𝑚 as (2𝑚 − 1) (2𝑚)
1/𝑚

2𝑚2
ln(2𝑚) for large 𝑡

Transitivity coefficient 𝑐(𝑡) Decrease with𝑚 as 3𝑚
2

2 (2𝑚 − 1) ((2𝑚)
2

+ 1)

for large 𝑡

Diameter diam(𝑡) 𝑡 𝑡 + 1

a: the properties for 𝐺(1, 𝑡) were obtained in [14].

Here, we should mention prior work that is conceptually
or spiritually relevant. The 𝑚 = 1 case of our model was
proposed in [14] as an alternative construction for Farey
graphs. Farey graphs have many interesting properties such
as minimally 3-colorable, uniquely Hamiltonian, maximally
outerplanar and perfect; see, for example, [15]. Random
constructions of Farey graph were explored in [16, 17], where
an edge is removed with some probability 𝑞 and 𝑞(𝑡) at each
step, respectively. Also for a different purpose, Dorogovtsev
et al. [18] used a similar deterministic iteration process to
generate pseudofractal scale-free networks (see also [19]).
They have relevant but distinct properties with respect to our
model.

The rest of the paper is organized as follows. In Section 2,
we present our growth model for small-world networks. We
report the structure properties of the model in Section 3. We
conclude the paper in Section 4 with open problems.

2. The Network Model 𝐺(𝑚,𝑡)

In this section, we introduce the geometric assortative
growth model for small-world networks in a deterministic
manner, and we denote the network graph by 𝐺(𝑚, 𝑡) =

(𝑉(𝑚, 𝑡), 𝐸(𝑚, 𝑡)) with vertex set𝑉(𝑚, 𝑡) and edge set 𝐸(𝑚, 𝑡)

after 𝑡 iteration steps. The construction algorithm of the
model is the following: (i) for 𝑡 = 0, 𝐺(𝑚, 0) contains two
initial vertices and an edge joining them, namely, 𝐾

2

; (ii) for
𝑡 ≥ 1, 𝐺(𝑚, 𝑡) is obtained from 𝐺(𝑚, 𝑡 − 1) by adding 𝑚 new
vertices for each edge introduced at step 𝑡 − 1 and attaching
them to two end vertices of this edge. As such, we will call an
edge a generating edge, if it is used to introduce new vertices
in the next iteration step. The first three steps of generation
process of the growth model are shown in Figure 1.

In what follows, wewill oftenwrite𝐺(𝑡),𝑉(𝑡),𝐸(𝑡), and so
forth, suppressing the variable 𝑚 if we do not emphasize the
specific value of𝑚. We denote the two initial vertices in 𝐺(0)

by V
0

and V
1

and the number of new vertices and edges added
at step 𝑡 by 𝐿

𝑉

(𝑡) and 𝐿
𝐸

(𝑡), respectively. Therefore, we have

t = 0

t = 1 t = 2

Figure 1: A depiction of graphs 𝐺(𝑚, 𝑡) produced at iterations 𝑡 =

0, 1, 2 with𝑚 = 2.

𝐿
𝑉

(0) = 2 and 𝐿
𝐸

(0) = 1. From the above construction, it is
easy to see that 𝐿

𝑉

(𝑡) = 𝑚𝐿
𝐸

(𝑡 − 1) and 𝐿
𝐸

(𝑡) = 2𝑚𝐿
𝐸

(𝑡 − 1),
which give rise to 𝐿

𝐸

(𝑡) = (2𝑚)
𝑡 and 𝐿

𝑉

(𝑡) = 𝑚(2𝑚)
𝑡−1 for

any 𝑡 ≥ 1. We have the following result.

Proposition 1. The order and size of the graph 𝐺(𝑡) are

|𝑉 (𝑡)| =
𝑚(2𝑚)

𝑡

+ 3𝑚 − 2

2𝑚 − 1
, |𝐸 (𝑡)| =

(2𝑚)
𝑡+1

− 1

2𝑚 − 1
,

(1)

respectively. Moreover, the average degree of 𝐺(𝑡) is

𝛿 (𝑡) = 4 −
12𝑚 − 6

𝑚(2𝑚)
𝑡

+ 3𝑚 − 2
. (2)

Proof. They can be directly checked by |𝑉(𝑡)| = ∑
𝑡

𝑖=0

𝐿
𝑉

(𝑖),
|𝐸(𝑡)| = ∑

𝑡

𝑖=0

𝐿
𝐸

(𝑖), and 𝛿(𝑡) = 2|𝐸(𝑡)|/|𝑉(𝑡)|.

Note that the average degree tends to 4 as 𝑡 → ∞

irrespective of 𝑚. This kind of sparse networks are common
in both humanly constructed and natural networks [20, 21].
Some more sophisticated properties will be addressed in
the following. We will, for example, improve the one-point
average-degree characterization of a network by considering
assortativity, a two-point correlation quantity.
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3. Topological Properties of 𝐺(𝑚,𝑡)

Thanks to the deterministic nature of the graphs 𝐺(𝑚, 𝑡),
in this section we will derive analytically some main topo-
logical properties, namely, the degree distribution, degree
correlations, clustering coefficient, transitivity coefficient,
and diameter.

3.1. Degree Distribution. A fundamental quantity character-
izing the structure and driving the behavior of a large network
is the probability distribution function 𝑃(𝛿) of vertex degree
𝛿. It is the probability that a randomly chosen vertex has
𝛿 direct neighbors. It is often convenient to consider the
cumulative degree distribution [17, 21, 22]

𝑃cum (𝛿) =

∞

∑

𝛿


=𝛿

𝑃 (𝛿


) , (3)

which indicates the proportion of the vertices whose degree
is greater than or equal to 𝛿. An appealing property of the
cumulative distribution is: Networks with exponential degree
distribution, namely, 𝑃(𝛿) ∼ 𝑒

−𝛼𝛿, also have exponential
cumulative distribution with the same exponent. Indeed,

𝑃cum (𝛿) =

∞

∑

𝛿


=𝛿

𝑃 (𝛿


) ≈

∞

∑

𝛿


=𝛿

𝑒
−𝛼𝛿



= (
𝑒
𝛼

𝑒𝛼 − 1
) 𝑒
−𝛼𝛿

. (4)

The Watts-Strogatz small-world model [1] also has an expo-
nential degree distribution as we will study here.Wemention
that there are some other geometric growthmodels proposed
in the literature, which follow another ubiquitous degree
distribution: scale-free distributions; see, for example, [18, 23,
24].

Proposition 2. The cumulative degree distribution of 𝐺(𝑡)
follows an exponential distribution 𝑃

𝑐𝑢𝑚

(𝛿) ∼ (2𝑚)
−(𝛿/2𝑚) for

large 𝑡.

Proof. Let 𝛿V(𝑡) denote the degree of vertex V in 𝐺(𝑡). Let
𝑡
𝑖,V be the step at which a vertex V is added to the graph.
From the construction, all the vertices in the graph (except
two initial vertices V

0

and V
1

) are always connected to two
generating edges and will increase their degrees by 2𝑚 at the
next iteration.

At 𝑡 = 0, the graph has two initial vertices V
0

and V
1

with degree 1; that is, 𝛿V
0

(0) = 𝛿V
1

(0) = 1. For 𝑡 ≥ 1, by
construction, we have

𝛿V
0

(𝑡) = 𝛿V
1

(𝑡) = 1 + 𝑚 + (𝑡 − 1)𝑚
2

. (5)

For other vertices, we have 𝛿V(𝑡𝑖,V) = 2 and 𝛿V(𝑡 + 1) = 𝛿V(𝑡) +

2𝑚. Thus,

𝛿V (𝑡) = 2 (𝑚 (𝑡 − 𝑡
𝑖,V) + 1) , (6)

for 𝑡 ≥ 𝑡
𝑖,V. Hence, the degree distribution of the graph

𝐺(𝑡) is as follows. The number of vertices of degree 2 ⋅

1, 2 ⋅ (𝑚 + 1), 2 ⋅ (2𝑚 + 1), . . . , 2 ⋅ (𝑚(𝑡 − 1) + 1), equals
𝑚(2𝑚)

𝑡−1

, 𝑚(2𝑚)
𝑡−2

, 𝑚(2𝑚)
𝑡−3

, . . . , 𝑚, respectively, and the
degrees of two initial vertices are given by (5).

Using (6), we have 𝑃cum(𝛿) = 𝑃(𝑡


≤ 𝜏 = 𝑡 − (𝛿 − 2)/2𝑚).
Thus, by exploiting Proposition 1, we obtain

𝑃cum (𝛿) ≈

𝜏

∑

𝑡


=0

𝐿
𝑉

(𝑡


)

|𝑉 (𝑡)|

=
2 (2𝑚 − 1)

𝑚(2𝑚)
𝑡

+ 3𝑚 − 2

+

𝜏

∑

𝑡


=1

𝑚(2𝑚)
𝑡


−1

(2𝑚 − 1)

𝑚(2𝑚)
𝑡

+ 3𝑚 − 2

=
𝑚(2𝑚)

𝜏

+ 3𝑚 − 2

𝑚(2𝑚)
𝑡

+ 3𝑚 − 2
∼ (2𝑚)

−(𝛿/2𝑚)

.

(7)

for large graphs (i.e., 𝑡 → ∞).

We will make use of the exact degree distribution of 𝐺(𝑡)
obtained in the above proof to study the clustering coefficient
in the sequel.

3.2. Degree Correlations (Average Neighbor Degree). To
uncover correlations between the degrees of connected ver-
tices, the average neighbor degree, 𝑘

𝑛𝑛

(𝛿), for vertices of
degree 𝛿, is defined as the average degree of nearest neighbors
of vertices with degree 𝛿 as a function of this degree value
[25, 26]. If 𝑘

𝑛𝑛

(𝛿) is an increasing function of 𝛿, vertices
with high-degree have a larger probability to be connected
with large degree vertices. In this case, the graph is said
to be assortative and this property is referred to in social
sciences as assortative mixing [12]. Generally, assortativity is
the tendency of entities to seek out and group with those
other entities that exhibit similar characteristics. In contrast,
a decreasing behavior of 𝑘

𝑛𝑛

(𝛿) defines a disassortative graph,
in the sense that high-degree vertices have a majority of
neighbors with low-degree, whereas the opposite holds for
low-degree vertices. In the absence of degree correlations,
𝑘
𝑛𝑛

(𝛿) is a constant.We remark here that the concept of 𝑘
𝑛𝑛

(𝛿)

is related to the groupie in graphs (see, e.g., [27, 28]).

Proposition 3. The average neighbor degree for 𝐺(𝑡) is,
respectively,

(i)

𝑘
𝑛𝑛

(𝛿
0

) =
𝑡𝛿
0

+ 𝑚𝑡 + 2𝑚
2

𝑡 + 2𝑚 − 𝑡

1 + 𝑚 + (𝑡 − 1)𝑚2
, (8)

where 𝛿
0

= 1+𝑚+(𝑡−1)𝑚
2 (cf. (5)) is the degree of two initial

vertices V
0

and V
1

:
(ii)

𝑘
𝑛𝑛

(𝛿) =
𝑚
2

𝛿

2 (2𝑚 − 1)
+

𝑚(2𝑚)
3

(2𝑚 − 1)
2

𝛿
+

𝑚
2

2𝑚 − 1

−
𝑚 (𝑡 + 3) (2𝑚)

(1+(𝛿/2))/𝑚

(2𝑚)
𝑡

𝛿
,

(9)

where 𝛿 = 2(𝑚(𝑡−𝑡
𝑖

)+1) (cf. (6)) is the degree of other vertices
added to the network at step 𝑡

𝑖

≥ 1.
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Proof. We first show (9). It is clear that all vertices introduced
at the same iteration step have the same degree. No vertices
(except V

0

and V
1

) added to the network at the same step will
be connected to each other. When a new vertex is added to
the network, it connects vertices with larger degrees and it
will connect vertices with smaller degrees in the subsequent
steps. From (6), for vertices introduced to the network at step
𝑡
𝑖

≥ 1, they have the same degree 𝛿 = 2(𝑚(𝑡 − 𝑡
𝑖

) + 1).
Let 𝛿(𝑡

𝑖

, 𝑡) represent the degree at step 𝑡 of a vertex that
was generated at step 𝑡

𝑖

. Thus, 𝛿(𝑡
𝑖

, 𝑡) = 2(𝑚(𝑡 − 𝑡
𝑖

) + 1). We
have

𝑘
𝑛𝑛

(𝛿) =
1

𝐿
𝑉

(𝑡
𝑖

) 𝛿 (𝑡
𝑖

, 𝑡)

× (2𝑚

𝑡

𝑖
−1

∑

𝑡



𝑖
=1

𝐿
𝑉

(𝑡


𝑖

) 𝛿 (𝑡


𝑖

, 𝑡)

+ 2𝑚

𝑡

∑

𝑡



𝑖
=𝑡

𝑖
+1

𝐿
𝑉

(𝑡


𝑖

) 𝛿 (𝑡


𝑖

, 𝑡) .

+𝐿
𝑉

(0) 𝛿 (0, 𝑡)) .

(10)

The first sum on the left-hand side of (10) accounts for the
adjacencies made to vertices with larger degree; namely, 1 ≤

𝑡


𝑖

< 𝑡
𝑖

, and the second sum represents the edges introduced
to vertices with a smaller degree at each step 𝑡



𝑖

> 𝑡
𝑖

. The last
term in (10) accounts for the adjacencies made to the initial
vertices V

0

and V
1

.
From (10), we derive that

𝑘
𝑛𝑛

(𝛿) =
1

(2𝑚)
𝑡

𝑖 (𝑚 (𝑡 − 𝑡
𝑖

) + 1)

× (

2𝑚 (2𝑚 + 2𝑚
2

𝑡) ((2𝑚)
𝑡

𝑖
−1

− 1)

2𝑚 − 1

−

4𝑚
3

((2𝑚)
𝑡

𝑖
−1

− 1 + 2𝑚 (𝑡
𝑖

− 1))

2𝑚 − 1

+

4𝑚
3

((2𝑚)
𝑡

𝑖
−1

− 1)

(2𝑚 − 1)
2

+

(2𝑚)
𝑡

𝑖
+1

(2𝑚 + 2𝑚
2

𝑡) ((2𝑚)
𝑡−𝑡

𝑖 − 1)

2𝑚 − 1

− ((4𝑚
3

((𝑡
𝑖

+ 1) (2𝑚)
𝑡

𝑖 ((2𝑚)
𝑡−𝑡

𝑖 − 1)

+ (2𝑚)
𝑡

(𝑡 − 𝑡
𝑖

)))

× (2𝑚 − 1)
−1

)

+
4𝑚
3

(2𝑚)
𝑡

𝑖
+1

((2𝑚)
𝑡−𝑡

𝑖 − 1)

(2𝑚 − 1)
2

+2 (1 + 𝑚 + (𝑡 − 1)𝑚
2

)) .

(11)

Feed 𝛿 = 2(𝑚(𝑡 − 𝑡
𝑖

) + 1) into the above expression, eliminate
𝑡
𝑖

, and simplify the consequential expression giving rise to (9)
finally.

Next, for the two initial vertices with degree 𝛿
0

= 1 +𝑚+

(𝑡 − 1)𝑚
2, we obtain

𝑘
𝑛𝑛

(𝛿
0

) =
𝑚

𝛿
0

𝑡

∑

𝑡



𝑖
=0

𝛿 (𝑡


𝑖

, 𝑡) =
2𝑚 (𝑡 + 1) + 𝑚

2

𝑡 (𝑡 + 1)

1 + 𝑚 + (𝑡 − 1)𝑚2
, (12)

which yields to (8) as desired.

Note that, as 𝑡 tends to infinity, (8) is tantamount to
(𝛿
0

+ 𝑚 + 2𝑚
2

− 1)/𝑚
2 and the last term on the right-

hand side of (9) is vanishing. Therefore, we conclude that
𝑘
𝑛𝑛

(𝛿) is approximately a linear function of 𝛿 for large 𝑡,
which implies that our model 𝐺(𝑡) undergoes assortative
growth.

To find the impact of parameter 𝑚, we note that (8)
decreases with𝑚, while (9) increases with𝑚 for large 𝑡. Since
the contribution to the degree correlation of the two initial
vertices of 𝐺(𝑡) is small, we can safely think of 𝑘

𝑛𝑛

(𝛿) as
an increasing function with respect to 𝑚 for large graphs,
meaning that 𝐺(𝑚, 𝑡) shows more significant assortative
mixing for larger𝑚. This fact will be even clearer drawing on
the correlation coefficient (see below).

3.3. Degree Correlations (Pearson Correlation Coefficient).
Another quantity often used to probe the assortativity is the
Pearson correlation coefficient 𝑟 of vertices connected by an
edge [12, 13],

𝑟 =
|𝐸|∑
𝑖

𝑗
𝑖

𝑘
𝑖

− (∑
𝑖

(1/2) (𝑗
𝑖

+ 𝑘
𝑖

))
2

|𝐸| ∑
𝑖

(1/2) (𝑗
2

𝑖

+ 𝑘
2

𝑖

) − (∑
𝑖

(1/2) (𝑗
𝑖

+ 𝑘
𝑖

))
2

, (13)

where 𝐸 is the edge set of the graph in question and 𝑗
𝑖

and 𝑘
𝑖

are the degrees of the vertices at the ends of the 𝑖th edge, with
𝑖 = 1, 2, . . . , |𝐸|. It lies in the range −1 ≤ 𝑟 ≤ 1.This coefficient
is zero for uncorrelated graph and positive or negative for
assortative or disassortative mixing, respectively. Let 𝑟(𝑡) be
the degree-degree Pearson correlation coefficient of 𝐺(𝑡). We
have the following result.
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Proposition 4. The Pearson correlation coefficient of 𝐺(𝑡) is

𝑟 (𝑡) = (1 + 𝑜 (1))

((((2𝑚)
2

+ 1) / (2𝑚 − 1)) (2𝑚)
5+2𝑡

) − ((9/ (4(2𝑚 − 1)
2

)) (2𝑚)
6+2𝑡

)

(((3(2𝑚)
2

+ 1) / (2 (2𝑚 − 1))) (2𝑚)
5+2𝑡

) − ((9/ (4(2𝑚 − 1)
2

)) (2𝑚)
6+2𝑡

)

→
2(2𝑚)

2

+ 2 − (9/ (2𝑚 − 1))

3(2𝑚)
2

+ 1 − (9/ (2𝑚 − 1))
,

(14)

as 𝑡 → ∞.

It is direct to check that (10) is positive for all 𝑚 ≥ 1. It
is an increasing function with 𝑚 and has upper bound 2/3.
Therefore, for large 𝑡, the growth model 𝐺(𝑚, 𝑡) is assortative
for all 𝑚 ≥ 1 and the level of assortativity increases with 𝑚.
This also justifies the above discussion of assortativity based
on local quantity 𝑘

𝑛𝑛

(𝛿).

Proof. Following the notation in [14], we denote by ⟨𝑗
𝑖

, 𝑘
𝑖

⟩ the
𝑖th edge in𝐺(𝑡) connecting two vertices with degree 𝑗

𝑖

and 𝑘
𝑖

,
respectively. By (5), the edge in𝐺(0) is thus ⟨1+𝑚+(𝑡−1)𝑚

2,
1+𝑚+(𝑡−1)𝑚

2

⟩. (2𝑚)
𝑡

𝑖 new edges are added to the network
at iteration step 𝑡

𝑖

≥ 1. These edges will connect new vertices
to every vertex in𝐺(𝑡

𝑖

−1), whose degree distribution at 𝑡
𝑖

−1

is 𝛿(𝑙, 𝑡
𝑖

− 1) = 2(𝑚(𝑡
𝑖

− 1 − 𝑙) + 1) for 1 ≤ 𝑙 ≤ 𝑡
𝑖

− 1, and
𝛿(0, 𝑡
𝑖

−1) = 1+𝑚+(𝑡
𝑖

−2)𝑚
2. Here, the 𝛿 notation is defined

in the proof of Proposition 3.
At each of the subsequent steps of 𝑡

𝑖

− 1, the degrees of all
these vertices will gain 2𝑚 except V

0

and V
1

, whose degrees
will gain𝑚. Consequently, at iteration step 𝑡 ≥ 𝑡

𝑖

, the number
of edges ⟨2𝑚(𝑡−𝑡

𝑖

)+2, 2(𝑚(𝑡
𝑖

−𝑙)+1)⟩ for 1 ≤ 𝑙 ≤ 𝑡
𝑖

−1 is (2𝑚)
𝑙,

and the number of edges ⟨2𝑚(𝑡 − 𝑡
𝑖

) + 2, 1 +𝑚+ (𝑡 − 1)𝑚
2

⟩ is
2𝑚.

We now can evaluate these sums in (13) for large 𝑡,

|𝐸(𝑡)|

∑

𝑖=1

𝑗
𝑖

𝑘
𝑖

= (1 + 𝑚 + (𝑡 − 1)𝑚
2

)
2

+ 2𝑚 (1 + 𝑚 + (𝑡 − 1)𝑚
2

)

×

𝑡

∑

𝑡

𝑖
=1

(2𝑚 (𝑡 − 𝑡
𝑖

) + 2)

+ 2

𝑡

∑

𝑡

𝑖
=2

𝑡

𝑖
−1

∑

𝑙=1

(2𝑚 (𝑡 − 𝑡
𝑖

) + 2)

× (𝑚 (𝑡
𝑖

− 1) + 1) (2𝑚)
𝑙

= ((2𝑚)
2

+ 1) (2𝑚)
4+𝑡

+ 𝑜 ((2𝑚)
𝑡

) .

(15)

Likewise, we have

|𝐸(𝑡)|

∑

𝑖=1

(𝑗
𝑖

+ 𝑘
𝑖

)

= 2(1 + 𝑚 + (𝑡 − 1)𝑚
2

)
2

+

𝑡

∑

𝑡

𝑖
=1

(2𝑚 (1 + 𝑚 + (𝑡 − 1)𝑚
2

) + 2𝑚 (𝑡 − 𝑡
𝑖

) + 2)

+

𝑡

∑

𝑡

𝑖
=2

𝑡

𝑖
−1

∑

𝑙=1

(2 (𝑚 (𝑡
𝑖

− 𝑙) + 1) + 2𝑚 (𝑡 − 𝑡
𝑖

) + 2) (2𝑚)
𝑙

=
3

2𝑚 − 1
(2𝑚)
3+𝑡

+ 𝑜 ((2𝑚)
𝑡

) ,

|𝐸(𝑡)|

∑

𝑖=1

(𝑗
2

𝑖

+ 𝑘
2

𝑖

) = (3(2𝑚)
2

+ 1) (2𝑚)
4+𝑡

+ 𝑜 ((2𝑚)
𝑡

) .

(16)
Feeding these quantities into the definition (13), we then
arrive at the desired result.

3.4. Clustering Coefficient. The clustering coefficient [1] is a
good indicator of local clustering, namely, the local density
of triangles, and thus often used to characterize small-world
networks. In a network 𝐺 = (𝑉, 𝐸), the clustering coefficient
𝑐(V) of a vertex V ∈ 𝑉 is the ratio of the total number 𝑒V of
edges that actually exist between all its 𝛿V nearest neighbors
and the number 𝛿V(𝛿V − 1)/2 of all possible edges between
them. More precisely,

𝑐 (V) =
2𝑒V

𝛿V (𝛿V − 1)
. (17)

The clustering coefficient 𝑐(𝐺) of the whole network 𝐺 is the
average of all individual 𝑐(V)’s,

𝑐 (𝐺) =
∑V∈𝑉 𝑐 (V)

|𝑉|
. (18)

In what follows, we compute the clustering coefficient for the
growth model 𝐺(𝑡).

Proposition 5. The clustering coefficient of 𝐺(𝑡) is
𝑐 (𝐺 (𝑡)) := 𝑐 (𝑡)

=
2𝑚 − 1

𝑚(2𝑚)
𝑡

+ 3𝑚 − 2

× ((2𝑚)
𝑡−1+(1/𝑚) ln (2𝑚)

−
1

2𝑚
Φ(2𝑚, 1, 𝑡 +

1

𝑚
) ,

+
4

1 + 𝑚 + (𝑡 − 1)𝑚2
) ,

(19)
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where the function Φ represents the Lerch transcendent (see
[29, Section 1.11]).

Proof. When a new vertex V is added to the graph, it is easy
to see 𝛿V = 2 and 𝑒V = 1. Furthermore, every subsequent
addition of an edge attached to this vertex will increase both
parameters by one unit. Therefore, we have 𝑒V = 𝛿V − 1 for
every vertex at every step. Thus,

𝑐 (V) =
2𝑒V

𝛿V (𝛿V − 1)
=

2

𝛿V
. (20)

Drawing on this relationship, the degree distribution
obtained in Proposition 2 can be useful for calculation of the
clustering coefficient of 𝐺(𝑡).

Indeed, the number of vertices with clustering coefficient
1, 1/(𝑚+1), 1/(2𝑚+1), . . . , 1/(𝑚(𝑡−1)+1), 2/(1+𝑚+(𝑡−1)𝑚

2

),
equals, respectively,𝑚(2𝑚)

𝑡−1

, 𝑚(2𝑚)
𝑡−2

, 𝑚(2𝑚)
𝑡−3

, . . . , 𝑚, 2.
Consequently, we obtain

𝑐 (𝐺 (𝑡)) =
1

|𝑉 (𝑡)|

× (

𝑡

∑

𝑖=1

1

(𝑖 − 1)𝑚 + 1
⋅ 𝑚(2𝑚)

𝑡−𝑖

+
4

1 + 𝑚 + (𝑡 − 1)𝑚2
)

=
2𝑚 − 1

𝑚(2𝑚)
𝑡

+ 3𝑚 − 2

× ((2𝑚)
𝑡−1+(1/𝑚) ln (2𝑚)

−
1

2𝑚
Φ(2𝑚, 1, 𝑡 +

1

𝑚
)

+
4

1 + 𝑚 + (𝑡 − 1)𝑚2
) ,

(21)

as desired.

For large graphs (i.e., 𝑡 → ∞), the right-hand side of (19)
approaches

(2𝑚 − 1) (2𝑚)
1/𝑚

2𝑚2
ln (2𝑚) , (22)

which is a decreasing function with respect to 𝑚. Hence,
for larger 𝑚, the level of local clustering becomes lower
eventually. This is not quite surprising since a large bunch of
vertices will be added to the network at each iteration when
𝑚 and 𝑡 become large, which mitigate the coefficient.

3.5. Transitivity Coefficient. Transitivity is an important
property especially in the analysis of social networks; see for
example [21, 30, 31]. Let 𝑇(𝐺) be the number of triangles and
𝑄(𝐺) be the number of paths of length two in a graph𝐺.Then
the transitivity coefficient 𝑐(𝐺) of 𝐺 can be defined as

𝑐


(𝐺) =
3𝑇 (𝐺)

𝑄 (𝐺)
. (23)

A brief discussion of the relationship between clustering and
transitivity coefficients can be found, for example, in [14].

Proposition 6. The transitivity coefficient of 𝐺(𝑡) is

𝑐


(𝐺 (𝑡)) := 𝑐


(𝑡)

= (1 + 𝑜 (1))
3𝑚
3

((2𝑚)
𝑡

− 1)

(2𝑚 − 1) ((2𝑚)
2

+ 1) (2𝑚)
𝑡+1

→
3𝑚
2

2 (2𝑚 − 1) ((2𝑚)
2

+ 1)

,

(24)

as 𝑡 → ∞.

Proof. We first calculate 𝑇(𝐺(𝑡)). Note that, if the number of
generating edges after iteration 𝑡 − 1 is 𝑎, the number of new
triangles introduced to the graph after iteration 𝑡 is 3𝑎. Since
𝑎 = 𝐿

𝐸

(𝑡 − 1), we obtain

𝑇 (𝐺 (𝑡)) = 𝑇 (𝐺 (𝑡 − 1)) + 𝑚𝐿
𝐸

(𝑡 − 1)

= 𝑇 (𝐺 (𝑡 − 1)) + 𝑚(2𝑚)
𝑡−1

,

(25)

which together with the initial value 𝑇(𝐺(1)) = 𝑚 gives

𝑇 (𝐺 (𝑡)) =
𝑚 ((2𝑚)

𝑡

− 1)

2𝑚 − 1
, (26)

for 𝑡 ≥ 1.
The number of paths of length two, 𝑄(𝐺(𝑡)), can be

derived as follows by using the degree distribution again:

𝑄 (𝐺 (𝑡)) = 𝑚(2𝑚)
𝑡−1

+ 𝑚

𝑡−1

∑

𝑘=1

(
2 (𝑘𝑚 + 1)

2
) (2𝑚)

𝑡−𝑘−1

+ 2(
1 + 𝑚 + (𝑡 − 1)𝑚

2

2
)

=
(2𝑚)
2

+ 1

𝑚2
(2𝑚)
𝑡+1

+ 𝑜 ((2𝑚)
𝑡

) ,

(27)

which, along with (26), leads to the stated result.

Clearly, the left-hand side of (24) is a decreasing function
of𝑚. Recalling the comments after Proposition 5, we see that
the difference between clustering and transitivity coefficients
of 𝐺(𝑡) is by and large quantitative. This is because they
measure a quite similar property of networks.

3.6. Diameter. Network diameter, namely, the largest length
of the shortest paths between all pairs of vertices, is a mea-
sure of the transmission performance and communication
efficiency. We show analytically the diameter of our growth
model and find a quantitative difference between 𝑚 = 1 and
𝑚 > 1.

Proposition 7. The diameter diam(𝐺(𝑚, 𝑡)) := diam(𝑡) of
𝐺(𝑚, 𝑡) equals 𝑡 for𝑚 = 1 and 𝑡 + 1 for𝑚 ≥ 2.
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Proof. The case of 𝑚 = 1 was shown in [14]. In what follows,
we take over their method to study𝑚 ≥ 2.

Clearly, diam(𝐺(𝑚, 0)) = 1 and diam(𝐺(𝑚, 1)) = 2.
At each step 𝑡 ≥ 2, the longest distance between two
vertices is for some vertices added at this step corresponding
to different generating edges at the last step. Consider two
vertices introduced at step 𝑡 ≥ 2 corresponding to different
generating edges, say 𝑢

𝑡

and V
𝑡

. The vertex 𝑢
𝑡

is adjacent to
two vertices, and one of them must have been added to the
graph at step 𝑡 − 2 or earlier.

If 𝑡 = 2𝑘 is even, 𝑢
𝑡

can reach some vertex in 𝐺(𝑚, 0) by
𝑘 jumps, and the same thing is true for vertex V

𝑡

. Therefore,
diam(𝐺(𝑚, 2𝑘)) ≤ 2𝑘 + 1. If 𝑡 = 2𝑘 + 1 is odd, 𝑢

𝑡

can reach
some vertex in𝐺(𝑚, 1) by 𝑘 jumps, and the same thing is true
for vertex V

𝑡

. Therefore, diam(𝐺(𝑚, 2𝑘 + 1)) ≤ 2𝑘 + 2. These
bounds are attained by pairs of vertices 𝑢

𝑡

and V
𝑡

created at
iteration 𝑡, which correspond to different generating edges
and have the property of being connected to two vertices
introduced at steps 𝑡−1 and 𝑡−2, respectively. Consequently,
we have diam(𝐺(𝑚, 𝑡)) = 𝑡 + 1 for all𝑚 ≥ 2 and 𝑡 ≥ 1.

From Proposition 1, we have, for 𝑡 large,

ln |𝑉 (𝑡)| = ln(𝑚(2𝑚)
𝑡

+ 3𝑚 − 2

2𝑚 − 1
) ∼ 𝑡 ln (2𝑚) . (28)

Hence, we obtain the logarithmic scale

diam (𝑡) ∼
ln |𝑉 (𝑡)|

ln (2𝑚)
, (29)

which together with high clustering (Propositions 5 and 6)
justifies the small-world characteristics [1] of our growth
model.

4. Conclusion

We have studied a geometric assortative growth model
𝐺(𝑚, 𝑡) for small-world networks in a deterministic way.
We obtain analytical solutions of main properties of the
model, such as the degree distribution and correlations,
clustering and transitivity coefficients, and graph diameter, in
the full spectrum of parameter 𝑚. The 𝐺(𝑚, 𝑡) model holds
both tunable small-world and tunable assortative mixing
behaviors. This should be useful to guide the research and
development of varied social networks. On the other hand,
the deterministic character of this graph family should
facilitate the exact calculation of other network-oriented
quantities, including average path length, hyperbolicity [32],
modular structure, and motifs [33].

The introduction of tunable parameter 𝑚 also brings a
range of open questions for future research. In addition to
those mentioned before, here are more examples: how can
wemake a trade-off between local clustering and assortativity
by tuning𝑚 since they have opposite monotonicity? What if
𝑚 = 𝑚(𝑡) is a function of time?
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